X線光電子分光装置(XPS) 簡易マニュアル 測定編

光電子分光分析研究室

連絡先 坂入正敏 内線7111 鈴木啓太 内線6882

装置使用の前に

以下のルールを守って下さい

- 研究室内は土足厳禁、飲食厳禁です。ゴミはきちんと片づける
- 装置の故障、不具合を見つけたらすぐにスタッフに連絡
- 装置を乱暴に扱わない
- 研究室の物を勝手に持ち出したり、無くしたりしない
- 貴重品の管理は各自でお願いします。長時間部屋から抜ける場合などは、研究室の施錠も各自で行う事
- ステージの移動操作時、各装置のステージ位置稼働制限を守り ましょう。動かし過ぎると試料が検出器にぶつかり、故障します
- ソフトウェア、ハードウェア上のパラメータなどを変更した場合、
 装置使用後に必ず設定を元に戻す
- 分析装置PCIに直接自分のUSBなど記録メディアを差し込まない。
 当研究室専用のUSBを利用し、解析用PCを経由してデータを取り 出す事
- 分析室内に導入するものは全て素手で触らない。備品を利用して汚した場合は自分で洗浄する事
- 使用者が予約を取って、予約時間通り使用して下さい。予約時間からずれ込む場合は予約を事前に変更して下さい。
- 深夜早朝祝休日に使用する場合、使用中のトラブルは全て貴研 究室の責任で対応。また、装置利用について自分の指導教官に 知らせておく事。緊急連絡先は研究室入ロドアの横に記載して あります
- 初めて使う方は事前にスタッフに連絡を取って、講習を受けて下 さい
- ガスの出やすい試料、大きすぎる試料、壊れやすい試料など、 分析室真空度を劣化させる試料を勝手に入れない。心配な試料 は事前にスタッフにご連絡下さい

装置使用の前に

						× # 3		97 #	* *	キスパック く使用した	-		+/*****
~		MA	0.0086		使用した	10.3 2 H	シモス	使用前 (Pa)	使用限 (Pa)	7428	(mm)	BRS. BR	(ナノテク支援では 使用の場合)
Оя	×	10:00~17:00	光 電子	光電子分光 分析研究室	9	10	10	1.0 × 10-	3.0×10-	1	3	502.板铁	HNPA13,000
	118.	T.Canal	348-481]	1070 8.0	A.C.M.M.	1000		Shirts:]		[Den Aran
					Me Al								
					Me								
					Ma				100				
A		~			Me								
.я		~			4/70 Mg Al								
л	_0	~	1	-	#/20 Mg Ai								
H	8	~			4/20 Mg Al								
.8	.0	~			12/20 Mg Al				-				
	в	~	in and	for a state	₹/20	1000	1.000	10000	1	1		0.0	1

使用記録簿に名前や時間等を 記入。使用前の分析室真空度を チェックして値を記入する

使用後の分析室真空度のチェックと終了 時間の記入を忘れないで下さい。予約時間 とずれ込む場合は必ず先に予約を変更して 下さい

Ar+イオンガンのイオン化室 真空度と分析室真空度をチェッ クして下さい。通常は ✓ イオン化室 ~10⁻⁴Pa ✓ 分析室 ~10⁻⁷Pa 著しく真空度が劣化している場 合はスタッフに連絡

イオンガンユニットで Channel/float voltageボタンを押し て点灯させ、ディスプレイに表示さ れた番号が「7」である事を確認し て下さい

> イオンガンの電流電圧条件が各Channelに 入力されており、Channel番号を呼び出す事 でイオンガンが各条件に設定されます。 Channel 71はイオンガンが使えない設定に なっています 3

試料の準備

少し高さがある試料は底部を外し て固定します

装置の立ち上げの前に試料をホ ルダーにセットします。ホルダー類 は**真空デシケーター**の中に保管さ れています。通常の試料であれば ノーマルホルダーを利用

留め金やカーボンテープなどを 使い、試料をホルダーに固定。試 料が完全に固定されているのを確 認して下さい

> 粉末試料はペレット状に加工するか、カー ボンテープや金属薄膜に付着させてブロアー で十分に粉を飛ばすなどの処理を行って下さ い。少しでも試料が分析室内に残ると他の ユーザーの分析に半永久的に影響します

出来れば留め金固定は両脇に。固定後 はホルダーを振るなどしてみて固定を確 認して下さい。X線源と留め金&試料の位 置関係に注意して下さい

試料の準備

<u>・帯電試料用ホルダーについて</u>

中和電子銃を使った帯電補正を、試 料にバイアス電圧をかける事でより効 果的にします

> 試料に+100V印加してGNDの蓋部と電位差をつけ ます。不均一な電位を持っている試料表面の帯電 状況を均します

左絵のように試料を搭載し蓋をして 固定します。試料の厚みは1.3mmが限 度です。蓋部とホルダーの金属部が接 着しないようにセットします。試料表面 が蓋部より出ないようにします

固定後にホルダーの蓋部と端子部の 間で導通が取れていない事を確認しま す

> 導通があると蓋部に電圧をかけられないので効果 がありません

・試料の表面汚染について

空気中での表面汚染を出来るだけ防ぎたい場合、ドライプロセスで作成した試料については 作成後すぐにアルミホイルで包んだり、真空装置に保管して大気に晒さないで下さい。ウェットプ ロセスで作成した試料についてはアセトン洗浄した後に純粋洗浄、すぐにエアーダスターなどで 十分ブローし、アルミホイルなどで包んでください

<u>・試料のリファレンスピークについて</u>

試料のチャージシフトの補正やケミカルシフトの確認の為にリファレンスとなるピークを試料に 用意しておくと、解析の際良いと思います。特に炭素試料はチャージシフトの補正にC1sピークを 利用出来ない場合があるのでなおさら。Au薄膜やAuメッシュを一緒に乗っけて測定したり、試料 にAuをコートしておいて一緒に測定するとか、粉末体ならば他の化学状態が分かっている粉末 を混ぜ込んだりして一緒に測定すると良いでしょう

試料準備室への導入

ホルダーを試料準備室に導入して真 空を引きます。始めに準備室のロックを 外し、VENTボタンを押して準備室を大気 に戻します

準備室中のレールに平行にホルダー を載せ、奥側と接着。ホルダー裏の穴が 開いてある方が奥側です

試料導入棒の黒いリングを回して 「OPEN」から「CLOSE」に変えます。リング を回すとレールの下のフックが上下動し ます。ホルダー下側から覗き込んでホル ダーの穴にフックがはまっているのを確 認する事

ホルダーがセット出来たら扉を閉めて ロックをかけ、VENTボタンをもう一度押し て真空に引き直す

> ここで失敗してると分析室に導入出来ません。必ずホ ルダーがちゃんとセット出来てるか確認して下さい

> > 分析室への導入は準 備室で真空を十分に引 いてから行います。真空 を引く間に装置の立ち 上げを行います

金属板1枚なら20分くらい。粉 末だと1試料約1時間はかか ります

装置の立ち上げ

装置の立ち上げ

X線の立ち上げを行います。始めにX線源の種類を決めます

- Mg-Kα線
- Al-Kα線
- モノクロX線(Al) Mgの場合はAl/Mgボタンを点 灯、Alの場合は消灯させます。
 モノクロX線の場合はAlを選び、
 MONO/STDボタンを押して点灯させます

線源選択後、FILAMENTの電源を ON、ADJつまみをゆっくり回して CURRENT表示で3Aまで電流を上げ ます。上げてから5分待ちます

分析室真空度を確認して真空度が急激に劣 化しないように回して下さい。急ぐとガスが大 量に出て放電します

次にディスプレイの表示をX-RAY POWERに切り替えて、X-RAYの電 源をONにします。3kV,5mAが印加 されます。電圧・電流のつまみを3 分ごとに1刻みずつ順番に回し、 10kV,10mAまで上げていきます モノクロX線の場合は12kV,25mAまで

最後にAnalyzerの電源をONにします よく忘れるので注意

分析室への導入

ステージの位置を試料交換位 置に移動させます。ステージコン トローラーのP/Mボタンを押して 表示をMEMORYに切り替え、メ モリーNo.をUP,DOWNボタンで操 作し、No.SEを呼び出します。 MOVEボタンを押すと表示された 位置にステージが移動します 基本すでに試料交換位置にいるので動 きませんが必ず確認して下さい

少しでも違和感があったら無理に 入れず、スタッフを呼んで下さい

ホルダーの溝にステージ がはまります

ー番奥で止まります

リングを回してすっと 引き抜いて下さい

分析室への導入

V1バルブが閉まったら分析室真空度 を確認します。真空度が5.0×10⁻⁶Pa より劣化してる場合、試料を直ちに試料 準備室に回収し、準備室で真空引きを 続けて下さい。再度導入し、5.0× 10⁻⁶Paより良ければ、分析室で真空度 が落ち着くまでしばらく待ちます

10.0×10⁻⁷Pa以下ぐらいまで真空度を下げましょう

測定位置へジョイスティックを使い、 ホルダーを移動させます。測定中心点 はカメラモニターに表示される十字で す。試料が複数ある場合、位置をメモ リーする機能を使うと連続測定が出来 て便利です。P/MボタンでMEMORYに 切り替え、UP,DOWNボタンでメモリー したいNo.を呼び出し、ENTボタンを押 すと現在位置がメモリーされます

> 測定位置を合わせる時は 必ずZ軸も合わせてください。 カメラをズームさせて十字の センターでカメラフォーカス が合うようなZ値を探します ずれてると分析位置が合いませ ん。強度も出ません。エッチングの 位置もずれます

> > モノクロX線測定の場合は「モノク ロX線の設定」のところでZ位置合わ せを行います 10

カメラ本体に触れない

装置の立ち上げ(続き)

3.0mmф	36	36
1.0mmф	32	12
0.2mmф	12	9
0.03mmф	7	0

X線源の電圧電流を上げ終わった ら、SpecSurfのXPS Acquisitionから Sourceタブを選択し、X線源の種類、 電圧電流値を入力後、Statusで 「On」をクリック(「Off」がついてたら 先に「Off」をクリック)

Automatic Offにチェックをつけて設定すると 測定終了時やDepth profileのエッチング中な どにX線を自動でOffに出来ます

StatusがUpdateに替わったら、X 線源ユニットのAUTO/MANUボタ ンを押してAUTOに切り替えます 以降、X線源の設定を変更したい場合は AUTOからMANUに戻して下さい

測定範囲の設定は左画の2つ の絞りで切り替えます。ロックネ ジを緩めて、測定範囲を狭める 場合はCLOSE方向、広げる場合 はOPEN方向に絞りを回して左表 の数値に合わせます。36は OPEN方向に一周分開いて0に合 わせます

> 回し過ぎに注意して下さい。間違った方 向に回さないで下さい

> Depth profileなど、エッチング前後の様 子を見比べる場合は1mmφにした方が良 いです(3×3mmの範囲が削れますが、ま ともに削れている範囲は1mmφ程です)

> ミクロ測定(0.2mm、0.03mm)を行う場合 はカメラの十字が正しい分析位置を指定 出来ているか検証出来るものを用意し、 検証した方がいいです

モノクロX線の設定(利用時)

後ろ側にある ので誤って他の パーツに触れな いよう注意 X線源位置 目盛り

モノクロX線を利用する場合、「装置の立ち上げ」でモノクロX線を立ち上げをでした後、他に行う事が3つあります

 分光結晶の窓を開ける 本体中央にある左画の**切替器**で、 bakingからmonochromeを矢印に 合わせる

ロックネジを緩めてから回して下さい

X線源の位置を引かせる
 本体後ろにある左画のツマミを時
 計回りに回して、X線源を適当なと
 ころまで後退させる
 測定後、必ず元の位置に戻して下さい

 RatemeterでZ軸の調整 ステージTiltを-10°まで傾かせ、 目的試料を分析位置に移動。
 Acquire→RatemeterでRatemeter ウィンドウを立ち上げ、Centreに測 定元素のメインピーク値を入力し、 Start。ピークの強度がMaxになる ステージZ軸の値を見つけ、その位 置で測定作業orステージのメモ リーに記憶させる

> RatemeterのPass、Dwell、Refresh timeなど の値はZ移動によるピーク強度の増減が見や すいよう適宜変更して下さい

XPS acquisitionウィンドウを閉じないと¹² Ratemeterウィンドウは出てきません

Ar+エッチングの設定(利用時)

試料表面のコンタミネーションを削りたい場合、または深さ方向 のプロファイルを取る場合にAr+イオンガンの設定をします モニターの十字を中心に3×3mmの範囲でエッチング出来ます Ar+イオンガンエッチングは表面の化学状態に影響を与える場合があり、エッチングを行 いながら化学状態分析をする場合、エッチングによる影響について検証した方が良いです

Ar**ガスバルブ**を微調整し、9.5X10⁻²Paぐ らいで落ち着くようにします

 12.5×10^{-2} Paを超えるとエラーになります。開け過ぎないように

分析室の真空度も下がります。2.0 × 10⁻⁵Paより劣 化した場合はエッチングを中止してバルブを閉めてくだ さい

オートバルブコントローラーの 電源をONにします。バルブが 閉められ始め、イオン化室真空 計の値が一旦下がります

Ar+エッチングの設定(利用時)

Channelボタンを押してXつま みを回し、エッチングの条件を 選びます。条件は下表の通り です。Etching rateはSiO2で測 定したものです。Ch4はモノクロ X線測定の時にCh1と同じ条件 でエッチング出来る仕様です

channel	Ch1	Ch2	Ch3	Ch4
Beam energy	3000eV	2000eV	1000eV	3000eV
Emis current	20mA	20mA	20mA	20mA
Etching rate	14.2nm/min	6.6nm/min	3.8nm/min	14.2nm/min

XPS AcquisitionのExperimentタブから Experimentを「Depth Profile」に切り替え 後、Profilingタブを選択します。Presetに 使用するchannel番号、Pressureに「8.5」 と入力し、Setをクリック。次第にガスバ ルブが緩み、ガス圧が8.5X10⁻²Pa付近で 落ち着けばAr+エッチングの準備は終了 (Depth profileの場合はここまでやる)

Irradiation ON/OFFボタンで

エッチングを開始出来ます。 Timer DisplayをONにするとエッ チング経過時間がディスプレイ に表示されます(Timer Resetを 押すと時間がリセットされます)

中和電子銃の設定(利用時)

SpecSu	rf : Acquisition	and the state of
jile ⊻iew	<u>A</u> cquire <u>Window H</u> elp	X
G 🎬	AES XPS. UPS.N	
	Elood am Ratemeter	
	IMS ⊻ideo capture Ctrl+Shift+	v
	Stage control Gtrl+T	

PS Acquisition E開いてる場合 は先に閉じる 導電性のない試料の場合、 光電子の放出によって試料表 面に不均一な帯電が発生して しまう事があります。結果とし てエネルギー値や半値幅に 影響を与えます

中和電子銃により、試料表 面に電子を供給する事で帯電 現象を緩和出来ます

·中和電子銃利用方法

- **1. 中和電子銃ユニット**の電 源をON
- SELボタンを押してADJUST の項目をFIL.に切り替え、
 ADJつまみを回し、適当な 電流値まで上げる
- 3. メニューのAcquireから Ratemeterを起動させる

次ページに続きます

中和電子銃の設定(利用時)

ピークCount数だけでなく、ピーク位置、ピーク半値 幅も正常な値になるような電圧値を見つける 試料ごとに適当な電圧値を見つける

- のエネルギー値を入力。 Pass、Dwell、Refresh timeは ピーク形状が見やすくなる ように適当な値に適宜変更
- 5. Startボタンを押し、各検出 器のCount数を確認
- Acc.VをON。SELボタンで ADJUSTをAcc.Vに変更後、 ADJつまみを回して電圧値 を変化させながら、 RatemeterでピークCount数 が一番大きくなる電圧値を 探す
- 電圧値が見つかったらその 値で固定、Ratemeterを閉じ て通常通りの測定を行う

<u>・帯電試料用ホルダーを使っている場合</u>

上記の電子銃設定を行う前に左図の 電源を起動させてホルダーに電圧を印 加させます

- 1. POWER ON
- 2. OUTPUT ON
- 3. CURRENTを微量流す
- 4. VOLTAGEを100.0Vに設定

Wide scan

Experiment Louis I	0 1 p. (11 - 1	D .	
Experiment [Source]	Stage Profiling	Regions	Imagin
Experiment	Wide scan	R	Comn
Acquisition Mode	Wide scan		
Movement	Depth Profile Apple Resolved		
Positions	Total Reflection Image		
Lens Mode	3mm&1mm Mode	-	
Detector Channels	9		

測定法は全部で6種類あります。 どの測定を行う場合でもまずは Wide scanで測定しておくと良いで しょう ExperimentでWide scanを選択

現在のステージ位置で測定する場合は MovementでNoneを選択、ステージコン トローラーのメモリー機能を使う場合は Memoryを選択 Lens Modeに設定した測定範囲を選択

Stageタブで連続測定するメモリー番号の 始めの番号(First)と終わりの番号(Last)を入 力(Memory選択時)

RegionsタブでWide scanの各条件を設定

Pass(eV)はエネルギー分解能と強度に関わります。値を 小さくすれば分解能が上がり、強度が下がります。大体 5eV程が限界です。Step(eV)間隔はPass(eV)の1/100程に 設定すると良いです。Scansは測定してみて調整します。 ピークに対し、定性ならばバックグラウンドノイズの3倍、 定量ならば10倍は強度が取れるように設定します。Scan 回数のルートでバックグラウンドノイズは減少します(主に Narrow scan時に設定)

> Startボタンで測定開始し ます。Checkボタンを押す と測定予測時間が表示さ れます

None None

Planar Normal

cquisition Moa

Movement

Positions

Markerの付け方

Wide scanを取ったらマーカーをつけ てピークの同定をします。左画のアイ コンをクリック

スペクトル上にラインが現れます。ピー クにドラッグして当てるとSuggested Peaks に想定される元素一覧が表示されます。 Elementから元素を選択してAddを押すと 元素名がスタンプされます。元素によっ てはChemical Shiftの一覧も載っており、 これもスタンプ出来ます。最後にOKをク リックするとスタンプが残ります Displayのチェックボックスで表示を各種変更出来ます

larkers ▼ 8 🛨 Add Remove All Element 0 Cursor OK 531.012 - 6 -Remove Remove All Energy Shifts Cancel Suggested Peaks Shifts Ag2CO3 1s 530.6 Pd 3p3/2 531.000 0 1s 532.000 At 4d3/2 533.000 Sb 3d5/2 528.000 Hide 530.1 C(graphite) 284.5 Fe203 15 529.8 FeO Remove Remove All 530.1 FeOOH 1s 1s 531.2 FeOOH Display 533.1 H20 1s ✓ Labels I Lines Photo peaks 529.9 1205 C Short G All lines 531.9 Auger peaks KCIO3 C Default line(s) ☐ Shifts

XPSハンドブックアイコンで標準試料のスペクトルを見る事が出来るので参考にして下さい

スペクトルにはピークではないものが良く映り込 みます。間違って同定してしまわないように気をつ けて下さい。サテライトピーク、オージェピーク、ス ピン軌道相互作用による分裂など Mg-Kaだと730eV高いとこにO-Ka由来のスペクト ルが、230eV低いとこにAI-Ka由来のスペクトル (ゴーストピーク)が重なる事があります 近くに置いた別試料のピークが映る事もあります¹⁸

Narrow scan

Experiment	Narrow scan 💌
Acquisition Mode	Full
Movement	Memory

Wide scan後、定量や化学状態分析の
為、分解能の高いモードで各元素のメイ
ンピーク付近のスペクトルを取得します。
ExperimentでNarrow scanを選択します

Movement, Lens Modeは「Wide scan」を参照 Sourceタブは変更がなければそのままで

Stageタブでメモリー番号をセットしま す(Memory使用時、「Wide scan」参照)。 試料によって測定内容が違う場合はこ こで試料のグループ化を行えます。 Groupsにグループ名を入力後Addをク リック。First, Lastに1組の番号を入力し、 Groupから名前を選択します Comment欄に情報を入れとくと便利です。

Comment欄に情報を入れとくと便利です。 左画はメモリーNo.1がCrグループ、No.3がPETグ ループと登録され、1と3だけスキャンを行います

> RegionsタブでGroupを選択し (Group登録時)、測定する元素を Elementから選択します

> Wide scanスペクトルを開き、 左画のアイコンをクリックすると、 スペクトル上にStartライン(緑)と Finishライン(赤)が表示されます。 ピークに合わせてライン位置を 調整すると、測定範囲の条件に 反映されます

全てのWide scanで確認しましょう 残りの項目も適当に設定 します(特にScan回数、 「Wide scan参照」)

Group:		Element	C	0	Cr
· 14		Region	1.	10	20012
-Scan	ר Mode —	Start (eV)	294.000	542.000	585.000
	C CAF	Finish (eV)	274.000	522.000	565.000
C Denne	0.000	Step (eV)	0.100	0.100	0.100
A DOWN	CCRR	Dwell (ms)	100	100	100
		Pass (eV)	10	10	10
		Scans	1	1	1
		Repeat		1	1

Liste	
0 16 0 0 16	
	uisition - [20140
mmm III	<u>File Edit View Acquire Process</u>
	🔛 💈 上 🏷 🔊 KE 📴 U
	M 🗢 X 🐼 🗔 🖗 🗃
M.	~~

Narrow scan

Element	C	0	Cr	gtart
Region	1s	1s	2p3/2	Check
Start (eV)	294.000	542.000	585.000	Ster
Finish (eV)	274.000	522.000	565.000	
Step (eV)	0.100	0.100	0.100	Continue.
Dwell (ms)	100	100	100	Open
Pass (-).0	in più	10	10	Open.
Scans	10	10	10	Save_
Repeat	4	1		Class
41				Glose

測定中、経過をAcquisition Statusで 確認出来ます。Pauseを押すとscan1巡 後に測定が中断され、左画のように Scans回数だけ変更出来るようになりま す。変更後Continueをクリックすると測 定が再開されます

Stopを押すとscan1巡後で測定終了になります Abortは強制終了

 ・スペクトルウィンドウについて カーソルをスペクトル上にやる とウィンドウ右下にエネルギー 位置と強度が表示されます
 一度の測定で得たスペクトル は一つのウィンドウに格納され ています。各sample、各Region、 各Levelはウィンドウ右上のメ
 ニューから表示を変更出来ます データのSave, Openなどもウィンドウ単 位になります
 Memory番号、出力したデータの表記 番号が1番からに対し、sample番号が020 番から付けられます

Depth Profile

Experiment Source	Stage Profiling	Regions	Imaging
			Comme
Experiment	Depth Profile	I	
Acquisition Mode	Full	13	
Movement	Full		
Positions	Simultaneous		
Lens Mode	3mm&1mm Mode	I	
Detector Channels	9		

aroup ———		<u> </u> <u>B</u> efore	То	Time	
Control		1	1	0	
		2	4	15	
		5	10	60	
Totals ——					
Levelo	10				

Depth ProfileではAr+エッチングと 測定を交互に繰り返す事によって、 試料の深さ方向のプロファイルを取 得出来ます

ExperimentでDepth Profileを選択 し、イオンガンのガス圧調整を行う (「Ar+エッチングの調整」を参照) Acquisition ModeでFullを選択

> Separate(PB別法)とSimultaneous(PB同時法) を選択するとPeakとBackgroundのエネルギー 位置を指定してその差分強度だけを取得しま す。スペクトルを取得しない分高速で測定が出 来ます。元素のピーク強度プロファイルだけ取 れればいい場合に使えます(「Image & Linescan」参照)

Profiling**タブ**でエッチング時間の

設定を行います

左画では1回目(levelという単位)の測定前に0 秒、2回目~4回目の測定前に各15秒、5回目 ~10回目の測定前に各60秒ずつエッチングを 行うようになっています

あとの設定は「Narrow scan」と同様です。補足として、

・ガス圧の設定を行ってからガス圧が上がるの を待って測定を始める

 SourceタブではStatusでAutomatic OFFを推奨
 アトミックミキシング、選択スパッタリング等を 考慮した解析が必要な場合があります

Angle Resolved

Angle ResolvedではステージのTilt をアナライザー軸に対して徐々に傾 けながらスペクトルを取得して、非破 壊で試料の深さ方向のプロファイル を取得出来ます

> 最大80°まで傾けられるので平均分析深さ 6nmから1nmぐらいまでのプロファイルを取得出 来ます

ステージを大きく動かす分析なので十分に気 を付けて下さい。事前にスタッフにご相談下さい 分析後は必ずハード・ソフト共に設定を元に戻 して下さい

<u>
・XPS本体での設定</u>

試料を分析室に導入。傾ける ので必ずホルダーに試料を固 定する事

磁場レンズステージのロック ネジをある程度緩め、Z=18.45 からZ=7.25付近までステージを 下げる。下部にあるスイッチが 押されるのを確認する(小さくカ チッと音がします。そのままス テージを下げ続けるとスイッチ が壊れるので注意)

下げた**ロックネジ**を締める方 に回してステージを固定

Angle Resolved

Analyzer	DHA		SV
Stage	GSMP-	<u>.</u>	SV
Stage Controller	MPiF		SV CV
Ion Gun(s)	MIED		SV
Monochromator	J AI		SW
ASCU Port	4800,n,8,	1	SW
Sample Holder			Det
C Standard (Til	t Angle -10 ~ 10	[deg])	
T Large (Til	t Angle -10 ~ 10	[deg])	•
High Anglej III	t Angle -30 80	[deg])	
Energy Offset 0 ~ 50 eV			ץ ר
J. J. J. Start	4.475 [eV]		
AES Mode			
C Direct	C Diffe	erential	
Experiment Source	Stage Pr	ofiling 📗	Regions
N			
Experiment	Angle Res	solved	
Acquisition Mode	Full		I
Movement	Memory		I
Positions		T	
Lens Mode	3mm&1m	m Mode	Ī
Detector Channels		9	
Profiling Regions I Im	aging		
Group	From	То	Sten
Default 💌	0	80	5
-Control	0	80	5
C Manual			
- manual			2
Totals 17	1		
		And and a second s	
Levels 17			

・Spec Surfでの設定

View→ConfigurationからSystem Configurationダイアログを立ち上 げて、Sample HolderでHigh Angle を選択します Tiltを-30°から80°まで動かせる ようになります。以降、十分に注意 してステージ操作して下さい

ExperimentタブでAngle Resolved を選択し、Profilingタブでステージ の傾ける角度の設定を行います。 左画の設定だと0°から80°まで 5°ずつ傾けながら各レベルのス ペクトルを取得します。マイナス側 へは10°以上傾けるのは禁止 残りの設定は「Wide Scan」、 「Narrow Scan」を参照 ホルダーがX線源にぶつかりそう な場合はX線源の位置を引く (「モノクロX線の設定」参照)

←マイナス方向に傾け るとX線源にぶつかる恐 れがあるので、基本禁止 です。スタッフにご相談 下さい

Total Reflection

工程3を飛ばしてもそんなに問題あ りません

青:通常測定 赤:全反射X線測定 BackgroundでGainを合わせると、コン タミネーションのCのピーク強度が2倍 ほど大きくなっているのが分かる Total ReflectionではモノクロX線を使 用し、X線の全反射が起こるようス テージの位置関係を調整する事で通 常の測定深さから約2/3浅く、またS/N 比良くスペクトルを取得出来ます。主 に試料表面の汚染物質の評価に利 用出来ます

> 平滑な表面を持つ試料(Siウェハーなど)でなけ れば測定出来ません

- •<u>Total Reflection測定方法</u>
- 1. 試料表面がステージと平行になる ようホルダーに設置、試料導入
- モノクロX線を立ち上げ、Ratemeter
 で試料の光電子スペクトルを確認しながらZ位置を調整します(「モノクロX線の設定」参照)
- ExperimentでTotal Reflectionを選び、Tiltを-10°から-5°まで0.2° ずつ傾けて適当にスペクトルを取得、S/N比の傾向を確認
- -4°から-1°まで1°ずつ
 Ratemeterでスペクトルを確認しながら、強度が出るよう再度Zの調整 (追い込み)をします
- 5. Zの調整が終われば-1°でスペクト ル測定を行います

試料やホルダーが少し傾いていると-1°で測定 出来ません。S/N比が良い適当な傾きをRatemeter で見つけて測定を行って下さい 24

Image & Linescan

Experiment Source	Stage Profiling Region
Experiment	Image 💽
Acquisition Mode	Separate 🚽
Movement	Separate Simultaneous
Positions	
Lens Mode	0.2mm&0.03mm Mode 💌
Detector Channels	9 🗄

se	Profiling Regio	ons Imagini	5
+	Element	Si	Si
	Region	2p3/2	2p3/2
	- Peak	104.500	99.200
AE	Bk1	101.000	97.600
	Bk2	107.700	109.000
RR	Dwell (ms)	100	100
	Pass (eV)	10	10
	Scans	1	1
	Repeat	1	1

Element	Si	8		-	
Region	2p3/2	2	Channel	Energy	Setting
Centre	104.040	9	2	105,885	Peak
Bange	4 898		3	105.272	Peak ·
Channels	Default	- ,	4	104.659	Peak 💌
Dwall (ma)	Deraunt		5	104.049	Peak 🔽
Dwell (ms)		4	6	103.439	Peak 🔄
Pass (eV)	30.65	12	7	102.826	Peak 👱
Scans		1	8	102.213	Peak 🚬
Repeat	1	1	9	101.600	
			Group		jion
		Contraction of the local data	Default	T Si	2n3/2 -
		Contraction of the local distance of the loc	Jonan		-pore <u> </u>
		and the second se	I Normalize I	ntensity	

Imageでは最大5.0×1.8cmの元 素マッピング像を取得出来ます。 ケミカルシフトを利用して化学状態 の違う元素のマッピングも可能 まず事前に取りたい元素の Narrow scanを取得しておきます ExperimentでImageを選択し、 Acquisition ModeでSeparate(PB別 法、設定が楽)かSimultaneous(PB 同時法、測定が速い)を選択します

<u>•Separate(PB別法)</u> Regionsタブで取得したNarrow scanのスペクトルを元に、Peak、 Bk1、Bk2の値を設定します

Bk1は低エネルギー側バックグラウンド、 Bk2は高エネルギー側バックグラウンドに合 わせます。ここではSiO2由来のSiピークと metal-Si由来のSiピークに対してPeak,Bk1,Bk2 を設定しています

•Simultaneous(PB同時法)

Channels欄をクリックし、各 Channel(検出器)で取得する強度を BackgroundにするかPeakにするか 選択します。Range値(全検出器で 測定出来るエネルギー幅)が測定 したい元素の高エネルギー側 Background,Peak,低エネルギー側 Backgroundを抑え込めるように Pass値を適当に変更します

Image & Linescan

ステージコントローラーでimage像 を取得したい試料の範囲の、左上 のステージ位置をmemoryNo.1に、 右下のステージ位置を memoryNo.2に記録させます

> ImageタブでReadボタ ンをクリックし、メモリー 位置を読み込みます。 Scan ではSizeかStepか 選択し、像の解像度を 決定します。Modeでは Imageを選択します

rofiling Regions Imaging

Si

2p3/2

4.898

200

30.65

Si(SiO2)

Si(metal-Si)

104.049

Default

Si

203/2

99.200

3.803

200

23.8

Default

Si 2p3/2

Element

Region

Centre Range

Channels...

Dwell (ms)

Pass (eV)

Scans Repeat

Siピーク

(SiO2)

ModeでLinescanを 選ぶとNo.1から No.2の位置までの 線分析を行います

←Simultaneous(PB同 時法)でのLinescan結果 エッチングしたもの

Siピーク

(metal-Si) Siウェハーの真ん中をAr+

26

データの基本的な処理

前を付ける	(保存	Ministration (second second	namenigen	(Minister)	minister		1
(呆存する	北所印 🔁 Auto Stora	ice			• •		
R 15(13-5) (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	27140 20140311 32 20140311 4 20140311 4 20140311 4 20140311 4 20140311 4 20140311 4 20140311 1 20140311 1 2014031 1 2014011 1 200401 1 2004001 1 2	2014/2011.05547.j Marcov. Melka set 2014/2011.40554.Windo Melka set 2014/2011.40551.j Marcov. Melka set 2014/2011.41551.j Marcov. Melka set 2014/2011.21541. Marcov. Melka set 2014/2011.216446. Windo Melka set 2014/2011.20141.j Marcov. Melka set 2014/2011.20141.j Marcov. Melka set 2014/2011.2014.19. Marcov. Melka set 2014/2011.2014.21.Welka Melka set 2014/2011.2014.22.Windo Melka set 2014/2011.2011.2014.21.Welka Melka set 2014/2011.2014.21.Welka Melka set 2014/2011.2014.21.Welka Melka set 2014/2011.2014.21.Welka set 2014/2011.2014.21.Welka set 2014/2011.2014.21.Welka set			H 2014238,104002, Debt, Melka set 2014238,10431, Marow Melka set 2014338,10431, Acquine, Narow Melka 2014338,12033, Acquine, Narow Melka 20144030,044039,1010, Wide, Melka set 20144030,11302, Marow, Melka set 20144030,11302, Marow, Melka set		
	サジャクト名の0	201403	20 113741 Na	row MeKa	ssf	-	(保存(S)
Auto Storage	ファイルの種類の) SpecSu	af Data Files	(+.ssf)			キャンセル
Rece L Fold E D Work & sce	Operator: Administ Technique: XPS Source: x-ray (N Lens Mode: DHA IP Experiment: Narrow Movement: Memory Profile: None Comment:	trator AgKa) reset No.0 scan	Group Element Region Dwell (ms Pass (eV) Scans	Cr C 1s 100 100	Cr 0 1s 100 10	Cr 2p3/2 100 10 10 10 	
Group	Cr	Cr		Cr			
Element	С	0		Cr			
Region	1s	1s		2p3/3	2		
Dwell (ms)	100	100		100			
Pass (eV)	10	10		10			
Scans	10	10		10			
•					<u>}</u>		

20140320_113741_Na	rrow_MgKa.ssf 📃 💌	
SpecSurf Data Files	(*ssf) N -	
SpecSurf Data Files	(*.ssf)	A CAN
Text Files (*.csv)		
WINDOW PROTOCOL		cc

測定したスペクトルデータは全 て自動で日付・測定法・線源で名 前が記されてAuto Storageフォル ダに保存されます

> File→OpenからAuto Storageフォルダを選 択し、データを選択するとウィンドウ下部に データの詳細が表示されます

スペクトルを別の形式で保存す る場合はFile→Save asでファイル の種類を選択して下さい

> テキストファイルとVAMASファイルで出力 出来ます

File→Reportでスペクトルをレ

ポート形式で画像として出力出来 ます。スペクトルウィンドウ上でコ ピーをクリックして画像として貼り 付ける事も出来ます

データをXPS-PC上で個別に管理 しておきたい場合はデスクトップ にある「Spec surf測定データ」フォ ルダ下に研究室単位でまとめて 保存するようにして下さい

基本的にデータの管理は各自で行って下 さい。データ保存については保障しません

終了の手続き

まず初めに、下記ケースに応じて終了手順を進めて下さい 順番を必ず守って下さい

・帯電試料用ホルダーを使用した場合

電圧・電流値を0にする

- OUTPUT OFF
- POWER OFF
- ・中和電子銃を使用した場合
 - 電圧・電流値をOにする Acc.V OFF
 - 電源 OFF
- ・Ar+イオンガンを使用した場合
 - オートバルブコントローラー OFF 3分待つ
 - Arガスバルブを時計回りに一回転分閉める
 - イオン化室真空計のAVC OFF
- •Angle Resolved測定を行った場合

ステージを試料交換位置に移動 X線源の位置を元に戻す(ずらした場合) 磁場レンズのZ軸をZ=18.45に戻し、ロックネジを締める Configurationダイアログのholder設定をStandardに戻す

・モノクロX線を使用した(Total Reflection測定を行った)場合

ステージを試料交換位置に移動

X線源の位置を元に戻す

- 分光結晶の窓を閉め(Bakingに合わせる)、ロックネジを締める
- 次ページの「X線源を落とす」作業後、15分経過したらMONO/STDボタン を押してSTDに戻す

終了の手続き

全ての測定で共通の手続きです。順番を必ず守って下さい

X線源を落とす

Auto/ManuボタンでManualに変更 X-RAYの電流を最小値に、電圧を最小値にする X-RAY電源をOFF Displayの表示をFILAMENT POWERに変更 FILAMENTのADJつまみを回して電流を0にする FILAMENT電源をOFF SpecSurfのXPS acquisitionのSourceタブでOffをクリック ・試料の取り出し

· 試料の取り出し

ステージコントローラーのP/MボタンでMEMORY表示に変更 UP,DOWNボタンでNo.SEを表示させる MOVEボタンを押し、試料交換位置へ移動 V1ボタンを押してV1バルブを開ける 試料交換棒の黒いリングをOPENの状態にして前方に押し出す 黒いリングを回してCLOSEにする 黒いリングを一番後方まで引き、試料を試料交換室に回収 V1ボタンを再度押してV1バルブを閉める 試料交換室のロックを開ける VENTボタンを押して交換室を大気に開放 黒いリングを回してOPENにして、ホルダーを回収 試料交換室のロックして、VENTボタンを押し、真空に引く • XPS装置本体の終了

アナライザー電源 HTをOFF X線源を落としてから15分経過後、(モノクロX線利用時、MONO/STDをSTDに切 り替えてから)X-R、SPECボタンをOFF 冷却器の電源をOFF カメラ、カメラモニタ、ステージランプをOFF

その他の作業

研究室USBメモリで測定データを解析用PCに移動 Spec Surfを終了後、PCシャットダウン、ディスプレイOFF ホルダーから試料を回収、ホルダーは洗浄後、真空デシケーターに入れて真 空を引く。作業台を片付ける 分析室真空度をチェック、終了時間と共に使用記録簿に記入 他の装置使用者などがいない場合は研究室の照明を落とし、施錠を行う²⁹