講演タイトル	発表者名	講演会名
Fe304(001)/Mg0(001)/Fe(001)	安井彰馬 1 本多周太 2	
強磁性トンネル接合における大	岡林潤 3 柳瀬隆 4 島	学術講演会
きな負の TMR 効果(ポスター)	田敏宏 4 〇長浜太郎 4	
Large TMR Effect of Magnetic	Taro Nagahama1*,	, ,
Tunnel Junctions with Fe304	Shoma Yasui2, Takashi	Core Research Cluster for
(ポスター)	Yanase1, and Toshihiro	Spintronics
	Shimada	
Preparation of Fe3Sn Alloy	Taro Nagahama1*, Akira	The 4th Symposium for the
Epitaxial Thin Films with	Maeno2, Takashi	Core Research Cluster for
Different Crystal Structures (ಸೆ	Yanase1, and Toshihiro	Spintronics
スター)	Shimada	
カビ様臭原因物質 2-4-6-	井口直輝、山内有二、富	第 81 回応用物理学会秋季
Trichloroanisole に対する ECR	岡智、松本裕(北大院工)	学術講演会
プラズマ照射の影響(口頭)		
カビ様臭原因物質 2-4-6-	井口直輝、山内有二、富	第 37 回 プラズマ・核融合
Trichloroanisole に対する ECR	岡智、松本裕(北大院工)	学会 年会
プラズマ照射の影響(口頭)		
低放射化バナジウム合金の重水	田上勇輔、山内有二(北大	第 37 回 プラズマ・核融合
素イオン照射後の滞留・脱離挙	院工)、長坂琢也(核融合	学会 年会
動と表面微細構造(ポスター)	研)、齋藤千貴(総研大)、	
	富岡智、松本裕(北大院	
	工)	
「高周波電流によるファイル未	内沢英作、熊谷広道、百	日本歯科保存学会
到達根管内容物の焼灼」(ポスタ	海 啓、菅谷 勉	
ー発表)		
早期再利用のために開発された	氣田一騎, 山内有二, 長	第 38 回 プラズマ・核融合
バナジウム合金のヘリウム挙動	坂琢也, 申晶潔, 富岡智,	学会 年会
	松本裕	
Alleviating the influence of	R. Zhu, S. Kirano, C. Zhu,	第 36 回ライラックセミナ
"Dead Li" by accommodating Li	Y. Aoki, H. Habazaki	ー・第 26 回若手研究者交流
metal anode in a channel		会
structured carbon host (poster)		
高黒鉛化プレートレット炭素ナ	佐藤 優樹, Damian	第 36 回ライラックセミナ

ノファイバーの塩基性溶液中酸	Kowalski, 北野翔, 青木	
素発生反応下における高耐久性	芳尚, 幅崎 浩樹	会
機構 (ポスター)		
Effects of Anode Functional	72nd Annual Meeting of	72nd Annual Meeting of the
Layer on Performances of	the International Society	International Society of
Protonic Solid Oxide Steam	of Electrochemistry	Electrochemistry
Electrolyzers (oral)		
Fabrication of Highly Active	H. Habazaki, M.	72nd Annual Meeting of the
OER Electrocatalysts from	Nishimoto, N. Yamada,	International Society of
Nanoporous Fluoride	D. Kowalski, S. Kitano, Y.	Electrochemistry
Precursors Formed by	Aok	
Anodizing (oral)		
塩基性 OER 環境下で消耗しな	佐藤 優樹, Damian	2021 年電気化学会秋季大
いナノ構造炭素材料の耐食機	Kowalski, 北野 翔, 青木	会
構」,2021年電気化学会秋季大	芳尚, 幅崎 浩樹	
会 (口頭)		
アルミニウムの水和酸化物皮膜	高野 辰幸, 北野 翔, 青	表面技術協会第 144 回講演
の構造とイオン透過挙動(口頭)	木 芳尚, 幅崎 浩樹	大会
化学エッチング・アノード酸化	森 孝洋, Damian	表面技術協会第 144 回講演
を利用したチタン表面の超撥液	Kowalski, 北野 翔, 青木	大会
化 (口頭)	芳尚, 幅崎 浩樹	
ポーラス構造を利用した滑液性	山本 涼太, 北野 翔, 青	表面技術協会第 144 回講演
固体表面の作製 (口頭)	木 芳尚, 幅崎 浩樹	大会
Proton Pumping Modifies the	S.W. Jeong, S. Kitano, H.	Solid State Proton
Nature of Triple-Phase	Habazaki, Y. Aoki	Conductors (SSPC-20)
Boundaries at Cathode and	,	, ,
Enables Fast Cathode Reaction		
of Fuel Cells at Low		
Temperatures (口頭)		
Reduced phase of cubic	H. Toriumi, S. Kitano, H.	Solid State Proton
perovskite BaZr 0.5ln0.502.75	Habazaki, Y. Aoki	Conductors (SSPC-20)
(口頭)		(30. 3 23)
FeNiCo 合金のアノード酸化に	西本 政弘, 北野 翔, 青	ARS2021 研究発表会
よるアルカリ水電解用高活性電	木 芳尚, 幅崎 浩樹	
極触媒の作製と活性化機構(口		
頭)		
	<u> </u>	<u> </u>

Nitrous Oxide Reduction at Tin-	Zheng, Jinhang., Kato,	2021 年日本表面真空学会
modified Platinum-palladium	Masaru., Yagi, Ichizo	学術講演会
Single Crystalline Electrodes		
Electrocatalytic activity and	Yagi, Ichizo., Unuma,	ISSS-9
volatile product selectivity for	Yuki., Okui, Manabu.,	
nitrate reduction at tin-modified	Kato, Masaru.	
Pt(100), Pd(100) and Pt-		
Pd(100) single crystalline		
electrodes in acidic media		
BCC 型ハイエントロピー合金	井窪亮太、橋本直幸、礒	2021年度日本金属学会・日
の機械特性及び耐照射性評価	部繁人、岡 弘	本鉄鋼協会両北海道支部合
		同冬季講演大会
Co フリーハイエントロピー合	長友真裕子、橋本直幸、	2021 年度日本金属学会・日
金の高温水蒸気酸化特性	林重成、礒部繁人、岡弘	本鉄鋼協会両北海道支部合
		同冬季講演大会
Oxidation behaviors and	Bi Peng, N. Hashimoto,	The 20th International
irradiation effects of Cu-	H. Oka, S. Isobe	conference on Fusion
containing FCC high entropy		reactor materials (ICFRM-
alloys		20)
LiMgAlTi 軽量ハイエントロピ	橋本 明賢、礒部 繁人、	日本金属学会
ー合金の相形成における添加元	岡 弘、橋本 直幸	20212021.9.14-17 年秋期
素効果		(第 169 回)講演大会
延性を有するエネルギー炉用	井窪 亮太、橋本 直幸、	日本金属学会
BCC 型ハイエントロピー合金	礒部 繁人、岡 弘	20212021.9.14-17 年秋期
の開発研究		(第 169 回)講演大会
EELS を用いた高温酸化皮膜中	矢田 剛裕、國貞 雄治、	日本金属学会第 169 回秋期
の微量添加元素の荷電状態解析	坂口 紀史	大会
各種金属カチオンを含む溶液に	坂入正敏, 李礼	WEB(軽金属学会第 140 回
浸漬したアルミニウム合金に形		春期大会)
成する腐食生成物の分析		
Effect of mixed salts on	X. Han, M. Sakairi	WEB(材料と環境 2021)
hydrogen permeation behavior		
of steel during wet/dry		
corrosion		
鋼の水膜下腐食に及ぼす膜厚の	門馬悠一郎, 坂入正敏	WEB(材料と環境 2021)
影響		
	1	1

模擬淡水における炭素鋼の腐食	李礼, 坂入正敏	WEB(材料と環境 2021)
に及ぼす金属カチオンの抑制効		
果		
Effect of Chloride Salts on	X. Han and M. Sakairi	WEB (72nd Annual Meeting
Hydrogen Permeation Behavior		of ISE)
of Steel During Wet/Dry		
Corrosion (口頭発表)		
Effects of Zn2+ on corrosion	L. Li and M. Sakairi	WEB (72nd Annual Meeting
behavior of aluminum alloy and		of ISE)
carbon steel in NaCl aqueous		
solutions		
金属カチオンによる乾湿繰り返	坂入正敏, 富樫侑介, 韓	WEB(2021 年電気化学秋季
し環境における鋼の水素透過挙	小楽	大会)
動変化		
Effects of chemical	M. Sakairi and X. Han	WEB (Eurocorr2021)
composition of deposited salt		
on hydrogen permeation		
behavior of steels during		
wet/dry corrosion		
模擬淡水環境中の金属カチオン	李礼, 坂入正敏	WEB(第 68 回材料と環境討
による炭素鋼表面の腐食形態変		論会討論会)
化		
炭素鋼の腐食挙動に及ぼすイミ	野口息吹, 坂入正敏, 水	WEB(第 68 回材料と環境討
ダゾリン系腐食インヒビターの	上裕貴, 砂場敏行	論会討論会)
影響		
各種金属材料の電気化学挙動に	Shen Tong, 坂入正敏	WEB(第 68 回材料と環境討
及ぼす溶液温度の影響		論会討論会)
油井環境の凝縮水中における	加藤雅貴, 坂入正敏, 栁	WEB(第 68 回材料と環境討
Mo 含有ステンレス鋼の電気化	瀬幸紀	論会討論会)
学測定		
Hydrogen permeation behavior	HanXiaole, M. Sakairi	WEB(第 68 回材料と環境討
of steel during wet/dry		論会討論会)
corrosion under different		
relative humidity and salts		
Influence of corrosion behavior	Liu Xinxin,坂入正敏	WEB(軽金属学会第 141 回
of titanium by metal cations in		秋期大会)
	Liu Xinxin,坂入正敏	,

sulfuric acid solution with		
flurried ions		
	Li. Viania 据于工协	WED(赵女民党女小海送士
Corrosion behavior of Titanium	Liu Xinxin,坂入正敏	WEB(軽金属学会北海道支
in sulfuric acid solutions with		部 2021 年講演大会)
fluoride ions and metal cations		
Influence of metal cation on	M. Sakairi	6th INTERNATIONAL
corrosion of metals in aqueous		CONFERENCE ON
environments		COMPUTER,
		COMMUNICATION,
		CHEMICAL, MATERIALS
		AND ELECTRONIC
		ENGINEERING (IC4ME2-
		2021)
Inhibition capability of Al3+ on	Md. Saiful Islam and M.	Bangradeshi (IC4ME2-2021
the low carbon steel corrosion	Sakairi	(International Conference
in different pH chloride solution		on Computer,
		Communication, Chemical,
		Materials and Electronic
		Engineering)
CO2 還元を目指すブラウンミラ	岡田拓之、辻悦司、菅沼	第 10 回 JACI/GSC シンポ
ーライト型 Fe-Co 系酸素発生	学史、片田直伸	ジウム
電極触媒の開発 (ポスター)		
中性での酸素発生反応を安定的	岡田拓之、辻悦司、菅沼	第 40 回光がかかわる触媒
に促進するブラウンミラーライ	学史、片田直伸	化学シンポジウム
ト型 Fe-Co 系酸化物触媒(ポス		
ター)		
中性での酸素発生反応を安定的	岡田拓之、辻悦司、菅沼	第 51 回石油·石油化学討論
に促進するブラウンミラーライ	学史、片田直伸	会
ト型 Fe-Co 系酸化物電極触媒		
(口頭)		
中性水溶液中でのブラウンミラ	岡田拓之、辻悦司、菅沼	2021 年電気化学秋季大会
ーライト型 Fe-Co 系酸化物の電	学史、片田直伸	
気化学的酸素発生に対する触媒		
活性(口頭)		
CaMoO4 のカルコゲン気相処理	内藤 樹、横倉聖也、長浜	応用物理学会
による Mo カルコゲナイド超		1.0.111\1.1.T 1 \text{ \text{\tint{\text{\text{\text{\text{\text{\tin}\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\titt{\text{\tint{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\tin}\tittt{\text{\text{\text{\text{\text{\tint{\text{\tin}\tittt{\text{\tin}\tittt{\tint{\text{\tint{\text{\tin}\tittt{\text{\tin}\tittt{\text{\tin}\tittt{\text{\text{\tinit}\titt{\text{\text{\text{\text{\tinit}\titt{\text{\titt{\titt{\titt{\titt{\titil\titt{\titt}\titt}\\titt}\titt}\titt}\titt}\titt}\titt}\titt}\tinttilex{\titt}\tittt{\titt}\tittt}\tittt}\tittt}\tinttilex{\tittt}\tittt{\tint}\
による IVIU カルコナナイト旭	小 即、每山 <u></u>	

反応性MBEを用いた Pr2/Ir2O7薄	薄膜の作製と物性 (口頭発表)		
全属錯体を出発原料とした炭素 系材料の高温高圧合成とその機	反応性MBEを用いたPr ₂ lr ₂ O ₇ 薄	大石舜士、横倉聖也、島	応用物理学会
金属錯体を出発原料とした炭素 能(ボスター) 大郎・島田 敏宏	膜の作製とその物性評価(ポス	田 敏宏、長浜 太郎	
 系材料の高温高圧合成とその機能(ボスター) Single Crystal Growth of π-Conjugated Molecules without solubilizing alkyl chains by Naphthalene Flux Method (口頭発表) Molecular dynamics simulation of fabrication processes of organic molecular thin films (口頭発表) 糖を用いた g-CaN4 の機械剥離と表面酸化が光触媒活性に与える影響(口頭発表) 交互蒸着法を用いた自立する共有結合性有機構造体膜の作製(口頭発表) 有結合性有機構造体膜の作製(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 市機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 市機の合成とその機能(口頭発表) 市場の企業の必要が表別である。 応用物理学会科季講演会の応用物理学会科季講演会の方式の表別である。 応用物理学会科季講演会の方式の表別である。 応用物理学会科季講演会の方式によるの対域に、	ター)		
能(ポスター)	金属錯体を出発原料とした炭素	山根 伊知郎 · 佐藤 昴	第 62 回高圧討論会
Single Crystal Growth of π-Conjugated Molecules without solubilizing alkyl chains by Naphthalene Flux Method (口頭発表) Molecular dynamics simulation of fabrication processes of organic molecular thin films (口頭発表) 精を用いた g-C ₃ N ₄ の機械剥離 と表面酸化が光触媒活性に与える影響(口頭発表) グ互蒸着法を用いた自立する共有結合性有機構造体膜の作製 (口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 「大友 亮一、柳瀬 隆、長浜 太郎、おり 大郎 東部 大郎、島田 敏宏 (口頭発表) 化学気相蒸着法による超伝導を示す NbS2 薄膜の作製(口頭発表) ボスタ (口頭発表) 化学気相蒸着法による超伝導を表) ボス (シ裏角 大郎、 大郎、 大郎、 大郎、 島田 敏宏 (ルラシー・アクレンフラックス法による 柳瀬 隆、 田野口 大彦、 応用物理学会秋季講演会 (ルカリー・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・	系材料の高温高圧合成とその機	汰 ・ 安藤 輝紀 ・長浜	
Conjugated Molecules without solubilizing alkyl chains by Naphthalene Flux Method (口頭発表) Molecular dynamics simulation of fabrication processes of organic molecular thin films (口頭発表) 棚を用いた g-CsN4 の機械剥離 息田 敏宏、Wei Liu、柳瀬 と表面酸化が光触媒活性に与える影響(口頭発表) 交互蒸着法を用いた自立する共有結合性有機構造体膜の作製(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 在機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 在機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 在機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 在機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 在機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 在機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 在機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 在機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 本樹 伊知郎、佐藤 昂汰、応用物理学会秋季講演会で表別、大友 亮一、柳瀬 隆、長 浜 太郎、 原用物理学会秋季講演会で表別、大力 東海 大郎、 島田 敏宏 「たい 乗種、表別、 応用物理学会秋季講演会で表別、 応用物理学会秋季講演会で表別、 本別・大力 大力 大郎、 島田 敏宏 「たい 乗種、大郎、 原本 大郎、 下川物理学会秋季講演会で表別、 本別・大郎、 島田 敏宏 「たい 乗種・大郎、 京田・ 大郎、 応用物理学会秋季講演会で表別、 本別・大郎・大郎・大郎・大郎・大郎・大郎・大郎・大郎・大郎・大郎・大郎・大郎・大郎・	能 (ポスター)	太郎 ・ 島田 敏宏	
Solubilizing alkyl chains by Naphthalene Flux Method (口頭発表) Molecular dynamics simulation of fabrication processes of organic molecular thin films (口頭発表) 相を用いた g-C₃N₄ の機械剥離 息田 敏宏、Wei Liu、柳瀬 を表面酸化が光触媒活性に与える影響(口頭発表) 交互蒸着法を用いた自立する共有結合性有機構造体膜の作製(口頭発表) 有結合性有機構造体膜の作製(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 大友 亮一、柳瀬 隆、長浜太郎、応用物理学会秋季講演会 化学気相蒸着法による超伝導を示す NbS2 薄膜の作製(口頭発表) ポアタレンフラックス法による 水瀬 隆、田野口 丈彦、 応用物理学会秋季講演会 「応用物理学会秋季講演会	Single Crystal Growth of π -	Takashi Yanase, Hirohiko	nternational Conference on
Naphthalene Flux Method (口頭発表) Molecular dynamics simulation of fabrication processes of organic molecular thin films (口頭発表) 糖を用いた g-C3N4 の機械剥離 島田 敏宏、Wei Liu、柳瀬 を表面酸化が光触媒活性に与える影響(口頭発表) 交互蒸着法を用いた自立する共有結合性有機構造体膜の作製(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 花 境、 大郎、島田 敏宏 化学気相蒸着法による超伝導を示す NbS2 薄膜の作製(口頭発表) オフタレンフラックス法による 化 現	Conjugated Molecules without	Tanoguchi, Toshihiro	Flexible and Printed
Molecular dynamics simulation of fabrication processes of organic molecular thin films (口頭発表) 糖を用いた g-C3N4 の機械剥離 島田 敏宏、Wei Liu、柳瀬 応用物理学会秋季講演会を表面酸化が光触媒活性に与える影響(口頭発表) 交互蒸着法を用いた自立する共有結合性有機構造体膜の作製(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表が持の合成とその機能(口頭発表)を避解に、対している。 大友 亮一、柳瀬 隆、長天 太郎、島田 敏宏 化学気相蒸着法による超伝導を示す NbS2 薄膜の作製(口頭発表) カトラシンフラックス法による 柳瀬 隆、田野口 丈彦、表別 応用物理学会秋季講演会 応用物理学会秋季講演会 応用物理学会秋季講演会 応用物理学会秋季講演会 応用物理学会秋季講演会 応用物理学会秋季講演会 応用物理学会秋季講演会 応用物理学会秋季講演会 が表別、 が表別、 が表別、 が表別、 が表別、 が表別、 が表別、 が表別、	solubilizing alkyl chains by	Shimada	Electronics 2021
Molecular dynamics simulation of fabrication processes of fabrication processes of organic molecular thin films (口頭発表) 糖を用いた g-CaN4 の機械剥離 島田 敏宏、Wei Liu、柳瀬 を表面酸化が光触媒活性に与える影響(口頭発表) 交互蒸着法を用いた自立する共有結合性有機構造体膜の作製(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 化学気相蒸着法による超伝導を示す NbS2 薄膜の作製(口頭発表) 化学気相蒸着法による超伝導を示す NbS2 薄膜の作製(口頭発表) ホ 共役分子の単結晶育成(口頭 場別 を	Naphthalene Flux Method (□		
f fabrication processes of organic molecular thin films (口頭発表)	頭発表)		
organic molecular thin films (口頭発表) Tanoguchi, *Toshihiro Shimada Electronics 2021 糖を用いた g-C₃N₄ の機械剥離 と表面酸化が光触媒活性に与える影響(口頭発表) 島田 敏宏、Wei Liu、柳瀬 医、長浜 太郎 応用物理学会秋季講演会 交互蒸着法を用いた自立する共有結合性有機構造体膜の作製(口頭発表) 加藤 将貴、柳瀬 隆、長 浜 太郎、島田 敏宏 応用物理学会秋季講演会 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 山根 伊知郎、佐藤 昂太、安藤 輝紀、神谷 裕一、大友 亮一、柳瀬 隆、長 浜 太郎、島田 敏宏 応用物理学会秋季講演会 化学気相蒸着法による超伝導を示す NbS2 薄膜の作製(口頭発表) 荒沢 奨輝、長浜 太郎、応用物理学会秋季講演会 ナフタレンフラックス法による 取瀬 隆、田野口 文彦、表) 応用物理学会秋季講演会 井フタレンフラックス法による 取瀬 隆、田野口 文彦、 島田 敏宏 応用物理学会秋季講演会 よの か変に かず か変に かず か変に かず	Molecular dynamics simulation	Xiaoran Yang, Ichiro	nternational Conference on
精を用いた g-C3N4 の機械剥離 と表面酸化が光触媒活性に与える影響(口頭発表) 交互蒸着法を用いた自立する共有結合性有機構造体膜の作製(口頭発表) 有機分子を出発原料とした炭素材料の合成とその機能(口頭発表) 化学気相蒸着法による超伝導を示す NbS2 薄膜の作製(口頭発表) カアタレンフラックス法による 加瀬 隆、島田 敏宏 「応用物理学会秋季講演会 応用物理学会秋季講演会 応用物理学会秋季講演会 が	of fabrication processes of	Yamane, Hirohiko	Flexible and Printed
糖を用いた g-C ₃ N ₄ の機械剥離	organic molecular thin films	Tanoguchi, *Toshihiro	Electronics 2021
と表面酸化が光触媒活性に与える影響(口頭発表) 交互蒸着法を用いた自立する共 加藤 将貴、柳瀬 隆、長 応用物理学会秋季講演会	(口頭発表)	Shimada	
を互蒸着法を用いた自立する共 加藤 将貴、柳瀬 隆、長 有結合性有機構造体膜の作製 浜 太郎、島田 敏宏 (口頭発表)	糖を用いた g-C ₃ N ₄ の機械剥離	島田 敏宏、Wei Liu、柳瀬	応用物理学会秋季講演会
交互蒸着法を用いた自立する共 有結合性有機構造体膜の作製 (口頭発表) 有機分子を出発原料とした炭素 材料の合成とその機能(口頭発 表) 化学気相蒸着法による超伝導を 示す NbS2 薄膜の作製(口頭発 表) ナフタレンフラックス法による π 共役分子の単結晶育成(口頭 島田 敏宏	と表面酸化が光触媒活性に与え	隆、長浜 太郎	
有結合性有機構造体膜の作製 浜 太郎、島田 敏宏 (口頭発表)	る影響(口頭発表)		
(口頭発表)	交互蒸着法を用いた自立する共	加藤 将貴、柳瀬 隆、長	応用物理学会秋季講演会
有機分子を出発原料とした炭素 山根 伊知郎、佐藤 昂汰、 応用物理学会秋季講演会 材料の合成とその機能(口頭発 安藤 輝紀、神谷 裕一、 大友 亮一、柳瀬 隆、長 浜 太郎、島田 敏宏 化学気相蒸着法による超伝導を 荒沢 奨輝、長浜 太郎、 応用物理学会秋季講演会 示す NbS2 薄膜の作製(口頭発 表) 表) ナフタレンフラックス法による 柳瀬 隆、田野口 丈彦、 応用物理学会秋季講演会 ホ 共役分子の単結晶育成(口頭 島田 敏宏 島田 敏宏	有結合性有機構造体膜の作製	浜 太郎、島田 敏宏	
材料の合成とその機能(口頭発 安藤 輝紀、神谷 裕一、 大友 亮一、柳瀬 隆、長 浜 太郎、島田 敏宏 化学気相蒸着法による超伝導を 示す NbS2 薄膜の作製(口頭発 表) ナフタレンフラックス法による π 共役分子の単結晶育成(口頭 島田 敏宏	(口頭発表)		
表)	有機分子を出発原料とした炭素	山根 伊知郎、佐藤 昂汰、	応用物理学会秋季講演会
浜 太郎、島田 敏宏 化学気相蒸着法による超伝導を 荒沢 奨輝、長浜 太郎、 応用物理学会秋季講演会	材料の合成とその機能(口頭発	安藤 輝紀、神谷 裕一、	
化学気相蒸着法による超伝導を 示す NbS2 薄膜の作製(口頭発 表)	表)	大友 亮一、柳瀬 隆、長	
示す NbS2 薄膜の作製(口頭発 表) 柳瀬 隆、島田 敏宏 ナフタレンフラックス法による 柳瀬 隆、田野口 丈彦、 π 共役分子の単結晶育成(口頭 島田 敏宏		浜 太郎、島田 敏宏	
表) ナフタレンフラックス法による 柳瀬 隆、田野口 丈彦、 応用物理学会秋季講演会 π 共役分子の単結晶育成(口頭 島田 敏宏	化学気相蒸着法による超伝導を	荒沢 奨輝、長浜 太郎、	応用物理学会秋季講演会
ナフタレンフラックス法による 柳瀬 隆、田野口 丈彦、 応用物理学会秋季講演会 π 共役分子の単結晶育成(口頭 島田 敏宏	示す NbS2 薄膜の作製(口頭発	柳瀬 隆、島田 敏宏	
π 共役分子の単結晶育成(口頭 島田 敏宏	表)		
`	ナフタレンフラックス法による	柳瀬 隆、田野口 丈彦、	応用物理学会秋季講演会
発表)	π 共役分子の単結晶育成(口頭	島田 敏宏	
, , , , , , , , , , , , , , , , , , , ,	発表)		
NiCo2O4 電極を用いた磁気ト 原 吉典、辻榮 朝香、島 応用物理学会秋季講演会	NiCo2O4 電極を用いた磁気ト	原 吉典、辻榮 朝香、島	応用物理学会秋季講演会
ンネル接合における負のトンネ 田 敏宏、長浜 太郎	ンネル接合における負のトンネ	田 敏宏、長浜 太郎	
ル磁気抵抗効果(ポスター)	ル磁気抵抗効果(ポスター)		
Fabrication of Fe-Cr-Sn Heusler 応用物理学会秋季講演会	Fabrication of Fe-Cr-Sn Heusler		応用物理学会秋季講演会

alloy epitaxial films(口頭発表)		
Molecular dynamics simulation	Takashi Kudo, Toshihiro	応用物理学会秋季講演会
of fabrication processes of	Shimada, Taro	
organic molecular thin films	Nagahama	
(口頭発表)		
Controllong Gas Adsorption	Xin Zheng, Kiyonori	錯体化学会第71回討論会
Selectivity of Porous	Takahashi, Takayoshi	
Coordination Polymer by Glass	Nakamura, Shin-ichiro	
Nonporous Coordination	Noro	
Polymer Shell (口頭)		
糖鎖高分子で賦形化された多孔	谷本憂太郎、野呂真一郎	糖鎖高分子で賦形化された
性金属錯体のガス吸着特性		多孔性金属錯体のガス吸着
(ポスター)		特性
ジルコニウム担持メソポーラス	小野遼人、高田知哉、下	第48回炭素材料学会
カーボンへのフッ化物イオン吸	田周平、福岡淳	
着特性 (口頭発表)		